metabelian, soluble, monomial, A-group
Aliases: C24⋊2C9, (C2×C6).3A4, C22⋊(C3.A4), C3.(C22⋊A4), (C23×C6).2C3, SmallGroup(144,111)
Series: Derived ►Chief ►Lower central ►Upper central
C24 — C24⋊C9 |
Generators and relations for C24⋊C9
G = < a,b,c,d,e | a2=b2=c2=d2=e9=1, eae-1=ab=ba, ac=ca, ad=da, bc=cb, bd=db, ebe-1=a, ece-1=cd=dc, ede-1=c >
Subgroups: 171 in 61 conjugacy classes, 15 normal (5 characteristic)
C1, C2, C3, C22, C22, C6, C23, C9, C2×C6, C2×C6, C24, C22×C6, C3.A4, C23×C6, C24⋊C9
Quotients: C1, C3, C9, A4, C3.A4, C22⋊A4, C24⋊C9
Character table of C24⋊C9
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 9A | 9B | 9C | 9D | 9E | 9F | |
size | 1 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ92 | ζ98 | ζ95 | ζ94 | ζ9 | ζ97 | linear of order 9 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ94 | ζ97 | ζ9 | ζ98 | ζ92 | ζ95 | linear of order 9 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ98 | ζ95 | ζ92 | ζ97 | ζ94 | ζ9 | linear of order 9 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ95 | ζ92 | ζ98 | ζ9 | ζ97 | ζ94 | linear of order 9 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ97 | ζ9 | ζ94 | ζ95 | ζ98 | ζ92 | linear of order 9 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ9 | ζ94 | ζ97 | ζ92 | ζ95 | ζ98 | linear of order 9 |
ρ10 | 3 | -1 | -1 | -1 | 3 | -1 | 3 | 3 | -1 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ11 | 3 | -1 | 3 | -1 | -1 | -1 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ12 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ13 | 3 | -1 | -1 | 3 | -1 | -1 | 3 | 3 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ14 | 3 | -1 | -1 | -1 | -1 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ15 | 3 | 3 | -1 | -1 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ6 | ζ6 | -3-3√-3/2 | ζ6 | ζ65 | ζ65 | ζ65 | ζ65 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ16 | 3 | -1 | -1 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | -3-3√-3/2 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | -3+3√-3/2 | ζ65 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ17 | 3 | -1 | 3 | -1 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | ζ6 | ζ6 | ζ6 | ζ6 | ζ65 | -3+3√-3/2 | ζ65 | ζ65 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ18 | 3 | -1 | -1 | -1 | 3 | -1 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ65 | -3+3√-3/2 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | -3-3√-3/2 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ19 | 3 | -1 | -1 | -1 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ65 | ζ65 | ζ65 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ6 | ζ6 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ20 | 3 | -1 | -1 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | -3+3√-3/2 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | -3-3√-3/2 | ζ6 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ21 | 3 | -1 | -1 | -1 | 3 | -1 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ6 | -3-3√-3/2 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | -3+3√-3/2 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ22 | 3 | 3 | -1 | -1 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ65 | ζ65 | -3+3√-3/2 | ζ65 | ζ6 | ζ6 | ζ6 | ζ6 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ23 | 3 | -1 | 3 | -1 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | ζ65 | ζ65 | ζ65 | ζ65 | ζ6 | -3-3√-3/2 | ζ6 | ζ6 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ24 | 3 | -1 | -1 | -1 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ6 | ζ6 | ζ6 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ65 | ζ65 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
(2 24)(3 25)(5 27)(6 19)(8 21)(9 22)(10 30)(11 31)(13 33)(14 34)(16 36)(17 28)
(1 23)(3 25)(4 26)(6 19)(7 20)(9 22)(11 31)(12 32)(14 34)(15 35)(17 28)(18 29)
(1 12)(3 14)(4 15)(6 17)(7 18)(9 11)(19 28)(20 29)(22 31)(23 32)(25 34)(26 35)
(1 12)(2 13)(4 15)(5 16)(7 18)(8 10)(20 29)(21 30)(23 32)(24 33)(26 35)(27 36)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
G:=sub<Sym(36)| (2,24)(3,25)(5,27)(6,19)(8,21)(9,22)(10,30)(11,31)(13,33)(14,34)(16,36)(17,28), (1,23)(3,25)(4,26)(6,19)(7,20)(9,22)(11,31)(12,32)(14,34)(15,35)(17,28)(18,29), (1,12)(3,14)(4,15)(6,17)(7,18)(9,11)(19,28)(20,29)(22,31)(23,32)(25,34)(26,35), (1,12)(2,13)(4,15)(5,16)(7,18)(8,10)(20,29)(21,30)(23,32)(24,33)(26,35)(27,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;
G:=Group( (2,24)(3,25)(5,27)(6,19)(8,21)(9,22)(10,30)(11,31)(13,33)(14,34)(16,36)(17,28), (1,23)(3,25)(4,26)(6,19)(7,20)(9,22)(11,31)(12,32)(14,34)(15,35)(17,28)(18,29), (1,12)(3,14)(4,15)(6,17)(7,18)(9,11)(19,28)(20,29)(22,31)(23,32)(25,34)(26,35), (1,12)(2,13)(4,15)(5,16)(7,18)(8,10)(20,29)(21,30)(23,32)(24,33)(26,35)(27,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );
G=PermutationGroup([[(2,24),(3,25),(5,27),(6,19),(8,21),(9,22),(10,30),(11,31),(13,33),(14,34),(16,36),(17,28)], [(1,23),(3,25),(4,26),(6,19),(7,20),(9,22),(11,31),(12,32),(14,34),(15,35),(17,28),(18,29)], [(1,12),(3,14),(4,15),(6,17),(7,18),(9,11),(19,28),(20,29),(22,31),(23,32),(25,34),(26,35)], [(1,12),(2,13),(4,15),(5,16),(7,18),(8,10),(20,29),(21,30),(23,32),(24,33),(26,35),(27,36)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])
C24⋊C9 is a maximal subgroup of
C24⋊C18 C24⋊D9 A4×C3.A4 C3.A42 C24⋊3- 1+2 C24⋊23- 1+2 C9×C22⋊A4 C24⋊43- 1+2 C62.A4
C24⋊C9 is a maximal quotient of
C22⋊(Q8⋊C9) 2+ 1+4⋊2C9 C24⋊C27
Matrix representation of C24⋊C9 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
14 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 8 | 0 | 18 |
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
5 | 9 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 11 | 18 | 1 |
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
5 | 9 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
18 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 10 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
14 | 10 | 17 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 | 10 | 18 |
0 | 0 | 0 | 10 | 9 | 9 |
G:=sub<GL(6,GF(19))| [1,0,14,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,8,0,0,0,0,18,0,0,0,0,0,0,18],[18,0,5,0,0,0,0,18,9,0,0,0,0,0,1,0,0,0,0,0,0,18,0,11,0,0,0,0,18,18,0,0,0,0,0,1],[18,0,5,0,0,0,0,18,9,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[18,0,0,0,0,0,0,1,10,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,14,0,0,0,0,1,10,0,0,0,0,0,17,9,0,0,0,0,0,0,0,4,10,0,0,0,1,10,9,0,0,0,0,18,9] >;
C24⋊C9 in GAP, Magma, Sage, TeX
C_2^4\rtimes C_9
% in TeX
G:=Group("C2^4:C9");
// GroupNames label
G:=SmallGroup(144,111);
// by ID
G=gap.SmallGroup(144,111);
# by ID
G:=PCGroup([6,-3,-3,-2,2,-2,2,18,326,651,2164,3893]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^9=1,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,e*b*e^-1=a,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations
Export